
1 Naive Bayes Classification

The naive-Bayes classifier is a simple but powerful machine learning tool.
Though the model presumes class-conditioned independence between the ob-
served features in the data, and thus ignores many helpful structures in the
data, its results are often comparable to those achieved by considerably more
complicated algorithms. Combine this with the fact that these independence
assumptions greatly increase the feasibility bounds on problem size, and the
naive Bayes classifier remains a popular choice for decision rules.

This paper concerns itself with a particular data domain: each point has
n features, each of which is either 0 or 1. This point belongs to one of two
classes. Classification of an unlabeled point is achieved by examining the
point’s features and comparing the odds of seeing such a pattern under class
0 to the odds under class 1.

Before the classifier is ready to make such a judgement, however, it
must be primed with these class-dependent probabilities. This is accom-
plished through the provision of a training set. The Bernoulli parameter
p(fi = 1|C = c) ≡ θc

i , the odds of feature i being 1 under class c, is found
by maximizing the following likelihood function1 across the N data point
features available, xc

j for j = 1, 2, . . . , N :

L (θc
i |xc) =

N∏
j=1

(θc
i )

xc
ji (1− θc

i )
(1−xc

ji)

Note the independence assumptions kick in here, whereby each parameter
can be estimated alone.

The overall likelihood across all dimensions becomes:

L (θc|xc) =
n∏

i=1

N∏
j=1

(θc
i )

xc
ji (1− θc

i )
(1−xc

ji)

And under the monotonic log function, the same maximizing arguments
are produced by:

logL (θc|x) =
n∑

i=1

N∑
j=1

xc
jilog (θc

i ) + (1− xc
ji)log (1− θc

i )

=
n∑

i=1

 N∑
j=1

xc
ji

 log (θc
i ) +

N −
N∑

j=1

xc
ji

 log (1− θc
i )

1Bayesian approaches are also valid here, where a prior assumption of the Bernoulli
parameter’s distribution is made, only to be slowly refined as more data is made available.

1



As the argument of maximization is invariant to division by N , we can
simplify to:

maxθ0,θ1

n∑
i=1

µ0
i logθ0

i +
(
1− µ0

i

)
log

(
1− θ0

i

)
+

n∑
i=1

µ1
i logθ1

i +
(
1− µ1

i

)
log

(
1− θ1

i

)
It can be shown that this is maximized for the class’s sample mean along

dimension i:

θc∗
i =

1

N

N∑
j=1

xc
ji ≡ µc

i

This estimation of the parameters leads to the next step of classification.
The algorithm now has a firm grasp of θ0

i and θ1
i for each feature i. Good

classification involves picking out which features are most meaningful in dis-
tinguishing one class from the other. We use the log of the ratio of the two
class probabilites:

wi ≡ log

(
θ0

i

θ1
i

)
, vi ≡ log

(
1− θ0

i

1− θ1
i

)

When the two probabilities are equal, wi is zero. This indicates the
appearance of a 1 along that dimension is worthless – it’s no more a sign
of a class 1 point than a class 0 point. However, when the probabilities
diverge, wi moves towards positive or negative infinity (indicating 1’s are
more common for feature i in class 0 or class 1, respectively). This gives a
proximate measure of how ’important’ a feature is in terms of predicting a
data label.

The actual classification takes this w vector and runs with it. An unla-
belled point accumulates wi ’points’ for every dimension i that is a 1, and
vi if dimension i is a 0. The sign of the final sum of this number designates
whether the point should be treated as a member of class 0 (positive sum),
or class 1 (negative).

2 Sparsity

Given the capricious nature of statistics, it’s quite unlikely that any wi comes
out to a value of zero. In this sense, the naive Bayes classifier considers every
dimension somewhat useful, pushing the final judgment one way or the other.
A simple way to pare down the number of non-zero weights is to pick the top
k weights in order of largest magnitude |wi|.

2



To encourage sparsity directly, the procedure needs to return to the es-
timation stage. The current estimation of θ0∗/ bases its selection on maxi-
mizing the likelihood of observing the sample mean µ0. There’s no downside
to producing a non-zero wi. If we desire wi = 0, then we should counter-
act the benefit of more accuracte explanation of the data with a penalty
proportional to |θ0

i − θ1
i |. Now, the parameters will only diverge in cases

where the increased explanatory power exceeds this penalty. Ramping up
the proportional cost of divergence will cull greater and greater numbers of
wi’s.

This optimization now becomes:

maxθ0,θ1

n∑
i=1

µ0
i logθ0

i +
(
1− µ0

i

)
log

(
1− θ0

i

)
+

n∑
i=1

µ1
i logθ1

i +
(
1− µ1

i

)
log

(
1− θ1

i

)
−λ

∣∣∣θ0 − θ1
∣∣∣
1

This can be solved in closed form. The absolute value function is not
differentiable at 0, meaning it must be tested in two parts: first assuming
divergence, second assuming convergence. The stationary values of these two
hypotheses can be plugged into the penalized-likelihood equation, and the
two results can be compared. Whichever scores higher determines the value
of wi. Let s = sgn(µ0

i − µ1
i ). Under divergence, we have:

θ0∗
i =

λs + 1−
√

(λs + 1)2 − 4λsµ0
i

2λs

θ1∗
i =

λs− 1 +
√

(λs− 1)2 + 4λsµ1
i

2λs

Under convergence, we have:

θ0∗
i = θ1∗

i =
µ0

i + µ1
i

2

Notice that again the calculation of weight wi is independent of the other
dimensions. This sparse classifier requires the same order of computation,
O(n), as the threshold method above.

3 Testing

Data simulated in MATLAB reveals the l1-regularized optimization results
in feature selection that differs from simple thresholding. In Figure 1, we see
the magnitude of weights, |wi|, for a sweep of the regularization parameter
λ.

leave one out

3


